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The potential problem for the flow at high Reynolds numbers R outside the 
boundary layer and wake of a thin flat plate a t  small incidence with allowance 
for displacement thickness is not fully defined unless the position of the wake is 
known in advance. The Kutta-Joukowski hypothesis does not provide a satis- 
factory first approximation to this because of the singularity in curvature of the 
streamline springing from the trailing edge in inviscid flow, which implies that 
the initial curvature of the wake in the real flow will be large enough to cause a 
modification to  the potential flow. The net vorticity per unit length in a curved 
wake is approximately U, S,, dO,/ds, where U , ,  S,, and dO,/ds are respectively the 
undisturbed stream velocity, momentum thickness at  infinity and curvature. The 
outer potential problem is set up with a vortex sheet of this strength to represent 
the wake, leading to a singular integro-differential equation for O,(s). From the 
particular solution we obtainaproportionate correction - (C,/4n) (log 4/C,) to the 
Kutta-Joukowski circulation, where C, is the drag coefficient. For laminar flow 
this is of order R t l o g  ( l /R) .  However, the solution also contains an arbitrary 
constant which cannot be settled without an examination of the near wake. The 
recent work of Brown & Stewartson (1970) suggests that this may lead to a term 
of the lower order R-t, but depends on the assumption, not supported by the 
present analysis, that the pressure rise across the wake is o(R-i). 

1. Introduction 
The idea of calculating the outer field of flow past a two-dimensional obstacle 

at  high Reynolds numbers as the inviscid flow past its displacement surface goes 
back to Prandtl. The underlying reasoning, especially for the three-dimensional 
case, was set out by Lighthill (1958). In  recent years the two-dimensional calcu- 
lation has derived some further mathematical justification from the method of 
matched asymptotic expansions, as being the second outer approximation to the 
solution of the full Navier-Stokes equations when R + 03, R being the Reynolds 
number based, say, on the chord. It is clearly appropriate only for attached flows, 
and therefore only for streamline shapes below the stall; and even for such shapes 
a separation bubble may be inescapable in the trailing-edge region. Moreover, the 
flow in the wake must be treated as steady (although possibly turbulent) if the 
mathematical problem is to be well-posed, but this may well be an over- 
simplification. 

Van Dyke’s (1 964) demonstration that the outer flow is inviscid and irrotational 
up to order R-4, with inner boundary condition that $ a t  the surface equals the 
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displacement flux, was carried out for a semi-infinite flat plate, but the same 
reasoning would give the same inner boundary condition in terms of the displace- 
ment thickness along the centre-line of the wake behind a finite plate at  zero 
incidence. This would produce a term of order R-9 in the outer stream function. 
In the immediate trailing-edge neighbourhood, however, it  appears from the re- 
cent work of Stewartson (1969) and Messiter (1 970) that the singularity in the slope 
of the displacement thickness may result in a lower-order term (R-4) in the 
local outer flow. Brown & Stewartson (1970) extend these arguments to the case 
of asymmetric flow past a flat plate at  incidence; and Riley & Stewartson (1969) 
have made a start on the flow near the rear separation point for a symmetrical 
wedge section of half angle a. 

Some years ago the present author (Spence 1954), following the work of 
Preston (1949), carried out calculations of the flow past particular aerofoil sections 
with allowance for the displacement thickness both on the aerofoil thickness and 
on the wake centre-line. It was assumed that the gradient of the displacement 
thickness was finite at  the trailing edge-an assumption now called into question 
by Stewartson-but the rapid decrease of displacement thickness immediately 
downstream of the trailing edge was certainly a conspicuous feature of the 
predicted flow. In  these calculations the circulation round tlie aerofoil was 
calculated from a ‘modified Joukowski ’ requirement that the pressure difference 
between points just outside the boundary layer immediately above and im- 
mediately below the trailing edge should be the same when calculated through 
the trailing-edge boundary layer (i.e. by allowing for the boundary-layer stream- 
lines near the trailing edge) as when calculated from the external irrotational 
flow. This gave reasonable agreement with experiment, but is essentially empirical 
in the selection of the points at  which consistency is to be imposed between inner 
and outer flows. 

The correct asymmetrical outer problem is to find a stream function $ satisfying 
Q2$ = 0 and appropriate conditions a t  infinity, and such that $ -+ U81 on the 
solid surface and on either side of the wake centre-line $ = 0 say, where 8, is the 
appropriate displacement thickness, and U the local free-stream velocity. How- 
ever, this boundary condition is insufficient to define the problem unless we know 
the position of the wake (as we do that of the surface) in advance. In the absence 
of this knowledge, a further boundary condition on @ along the wake is needed to 
complete the specification of the problem, and the location of the wake will then 
emerge as part of the answer. The simplest such further boundary condition 
would come from applying the requirement of boundary-layer theory, that the 
pressure should not vary across the wake. This would hold provided KS were 
negligible to the approximation considered, where K is the wake curvature and 
S a representative thickness. In  the zeroth approximation, i.e. that of inviscid 
flow with the Joukowski circulation, the wake centre-line would be the streamline 
springing from the trailing edge. This streamline however has infinite curvature, 
which gives rise to a singular perturbation problem as 6 -+ 0. The problem was 
first noted in a paper by Spence & Beasley (1960) containing further calculations 
of the Preston type. 

The aim of the present paper is to formulate and solve this problem. Essentially 
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we have to balance the inner and outer flows so that the pressure rise across the 
wake is consistent with the streamline curvature which it induces. It turns out 
that this is possible if the curvature is of order a(cS)-*, where c and a are a 
reference length and flow inclination. The pressure rise across the wake is then 
of order a(6/c)*pU2,, i.e. for a laminar boundary layer, of order aR-ipU2,. Since 
the displacement thickness is of order R-tc, the wake curvature is responsible for 
a lower-order effect if aR4 B 1, but even if the two orders were comparable, the 

7 .Irrotational flow * 

Edge of boundary layer B - _ - - - - -  - - - -_  - - _ _  

FIGURE 1. Wake streamlines and displacement surface (schematic). 

curvature would have to be calculated first in order to find the position of the 
centre-line for use in calculating the displacement effect on the outer flow. Only 
the boundary-value problem for the curvature will be treated here, and we 
consider only a flat plate aerofoil. We do not in fact use the Kuttdoukowski 
hypothesis to provide a first approximation; instead we solve for the outer flow 
up to the order a(b /c ) t  in one step, and the circulation is then found to have the 
Kutt*Joukowski value in the limit S/c + 0. 

In  posing the problem it is more convenient to cast the analysis in terms of the 
net vorticity in a section of the wake than in terms of the pressure rise, because 
the latter depends on the precise points a t  which it is calculated, whereas the 
value of vorticity is uniquely determined, and is likewise proportional to KS. The 
aerofoil and wake then appear to the outer flow as a semi-infinite vortex sheet 
located on a streamline @ = 0, whose position downstream of the trailing edge is 
not known beforehand. The general scheme is indicated in figure 1. 

In  § 2 the Navier-Stokes equations are written in curvilinear co-ordinates to 
permit calculation of the vorticity. The turbulent terms are retained in this 
discussion, but it is argued that they do not affect the vorticity-curvature 
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relationship, except indirectly through the momentum thickness 8, which is a 
constant of proportionality. In  fact 8, varies slightly along the wake, but we may 
treat it as constant with an error of higher order than the effect considered, and 
related to the drag coeflicient C, by 8, = $cC,. 

The potential problem for the outer flow is formulated in $3, leading to an 
integro-differential equation for the slope @,(sf of the wake streamlines. A co- 
ordinate stretching transformation is found in 8 4 which displays the balance 
between vorticity and curvature in both inner and outer flows when the curvature 
dB,/ds is of order (c8,)-4. The circulation round an infinite contour, which gives 
the lift on the wing, is found from the solution of the integral equation, and turns 
out to be 1 - (CD/4rr) (log 4/C,) times the KuttaJoukowski value naU,c, so a 
proportional reduction in lift of order R-3 log R is produced by the effect; this is, 
in any case, of lower order than the contribution that would be produced in the 
same term by the displacement effect. 

There is, however, a term with arbitrary coefficient A, say, in the solution, 
which cannot be fixed from ‘outer’ considerations. If A is of order unity, the 
term of order C,logC, is the dominant correction. This is probably true for 
turbulent motion, but in the case of laminar flow the arguments of Brown & 
Stewartson (1970) who have examined the ‘inner’ viscous flow close to the 
trailing edge strongly suggest that A is of order RB, and is responsible for a term 
of the lower order R-% in the circulation defect. However they depend on the 
assumption that the pressure rise across the wake is zero to order R-a, whereas 
we find it to be of order AR-a, which would be consistent with their assump- 
tion only if A = 0. In that case C ,  log C, is the leading term. 

2. Vorticity in a curved wake 
Let s denote distance along the streamline @ = 0 which springs from the 

trailing edge, and K ( S )  be the curvature of this streamline. Within the wake we 
choose a system of co-ordinates (s ,n)  such that s is constant on straight lines 
normal to the streamline 9 = 0, and n measures distance from 9 = 0 along such 
lines. Taking (u, v) as mean velocity components in s and n directions, we intro- 
duce a characteristic width 6 say with which to scale distances and velocities 
across the wake, while making s non-dimensional with the aerofoil chord length c .  
Accordingly, in the full time-averaged Navier-Stokes equations for two-dimen- 
sional incompressible flow, write 

s = c X ,  n = SY, u = U ,  U ,  v = (8/c) U, V ,  y = (U,/S) 2, 

(Here p ,  p, 5 are pressure, density and vorticity, U, the undisturbed stream 
velocity, and --= the Reynolds stress.) With the exclusion of terms that are 
formally of order SIC, the equations become 

_. } (2.1) p = pUZ,P, -u’v’ = (8UZ,/c)T, K = K/8, H = 1 - K Y .  

(2.2) 

K U ~  ap 
H ay  

- + - - 0 ,  
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where 

is the dimensionless vorticity, and R = U,c/v. The continuity equation is exactly 

au a 
ax aY 
-+-((HV) = 0. 

For laminar flow T = 0 and we should take S/c = R-4, thus making the coefficient 
of the viscous term unity in (2.2). For turbulent flow the coefficient would be a 
negative power of R, about R-E, and the viscous term can be omitted. If the 
physical curvature K is of order c-l, K is of order S/c and may also be excluded. 
Then H = 1 and the equations are just those for the boundary layer on a plane 
wall. In  the case to be discussed, however, it turns out that there are regions in 
which K is of order (cS)-*; K is therefore of order ( S I C ) $  and must be retained in a 
treatment that is accurate to this order. Terms of order K 2  can, however, be 
excluded, so (2.3) and (2.4) may be taken as 

KU2+aP/aY = 0, -au/aY+KU = 2, (2.6) 

respectively. Outside the wake, in the region of irrotational flow, Z and T vanish, 
and (2.2) reduces to Bernoulli’s equation in the form a(P++U2)/aX = 0, with 
integral 

in view of the upstream conditions. 
Now let A and B be points just below and just above the wake on the same 

s line, as indicated in figure 1. The net vorticity per unit length at this station 
is then 

y(s) = J I C d n  = U, Z d Y  = -U,[U],B+KU, U d Y  

by (2.6). The difference in velocity across the wake can also be written in terms 
of the pressure difference 

P + gU2 = constant, (2.7) 

1: s,” 

[PI2 = [ - * U”3 = - O[ U]Z,  

where 
across the wake we find 

= Q(U,+U,), by (2.7). Also by integrating the first equation of (2.6) 

Elimination of [PI5 and [ U ] 2  from the last three equations gives 

B 
y = KU,IA U [ l - ( U / U ) ] d Y .  

This expression is independent of the precise locations of A and B on the same 
s line. 

In terms of the physical variables, the right-hand side is ~ ~ i i i s ~ ,  where 
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is the displacement thickness, and U = U, 8. (There is a slight imprecision in this 
definition, in that US, but not 6, itself is independent of the choice of A and B.) 
Now 8, satisfies a momentum integral equation 

as2 1 az 
- + ( 8 , + 2 6 ) - -  = 0, 
as uas (8.10) 

with an error of order K ~ S ~ ,  where S, is the displacement thickness similarly 
defined. 

From this it follows that the variation of 6, along the wake is of the same order 
as that of U, and may be neglected in a first-order theory. Accordingly we set 

y(s) = U m ~ ! Z m K ( S )  = 2PcUwK(s), 

p = +S2wlc = $CD. 

(2.11) 

(2.12) 

say, where 8,, is the value of 6, far downstream, which equals &CD, and 

3. The potential problem for the outer flow 
On the scale of the outer flow, y/6 $ 1. Van Dyke (1964) shows by expansion 

of the Navier-Stokes equations we then have V2$ = - w($)  up to order 6 (in his 
notation R-g), where w is the vorticity. In  the case he discusses of a semi-infinite 
flat plate at  zero incidence @(I++) is zero everywhere, since it is zero upstream; but 
in the present case there is a vortex sheet of strength y(s) per unit length extending 
from the front stagnation point to infinity downstream along the streamline 

The complex velocity w = qeciO due to the vortex distribution is given by 
I++ = 0. 

w(2) = -. -, 
2n3 s $ = O  yft)at t--z 

where ds = Ids] eieo is an element along the streamline whose slope is O,(s), say. 
The values of w immediately above and immediately below a point z = s of the 
streamline are connected by the Plemelj formula 

i{w+(s) + w-(s)} = -. 
2n3 ' S  @=O yOt, t - s  

These values must equal the inner limits as y + y(s, $,J from above and below 
of the outer flow, namely 

W& = piexp [-i(8,+S,,)l, (3.3) 

where Sl* are the values of displacement thickness on either side. The effect of 
displacement thickness, like that of aerofoil thickness, is purely additive to the 
present approximation, and for the reasons mentioned in 5 1 we do not consider 
i t  here. If now a is a representative scale for 8, then since wi. = U,( 1 + O(a) )  and 
ds, = Idsl\ ( 1  + O ( a ) ) ,  with the exclusion of terms of order a2 we can write the 
imaginary part of (3.2) as 
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This is the standard integral equation of thin aerofoil theory, now derived in 
terms of distance along the streamline $ = 0, which includes the surface of the 
plate as the interval 0 < s < c.  The boundary conditions to be applied are of 
mixed type: (i) On the interval representing the aerofoil 

0 < s < G :  O,(s) = -a. (3.5) 

s > c: y(s) = 2pcUmK(S). 13.6) 

(ii) Along the wake, by (2.11) 

These boundary conditions are the same as those satisfied by the slope and 
vorticity on a jet-flapped wing, which have been considered by Spence (1956, 
1961), and others, except that the sign of the curvature term in (3.6) is different, 
corresponding to a momentum defect in the wake, in contrast to the momentum 
excess in a jet sheet. The equations can be combined to give a single integro- 
differential equation for the unknown slope O,(s) on s > c ,  as follows. First, 
invert (3.4) to give 

t - s  * 
(3.7) 

This holds on the whole interval 0 < s < 00. For 0 < t < c we can substitute 
O,(t) = -a in the integrand, in accordance with (3.5). When the resulting integral 
is evaluated for c < s < co, on which range y(s) is given by (3.6), the equation 

P C 2  = ;[ 1: (8) t + e,(q -----a(2 at 
(:)'-log ('-))I (3.8) t - s  

is obtained. An equivalent form is 

where (3.10) 

@(s) is the slope of the zero streamline according to classical potential theory, 
i.e. in the absence of a wake, and exhibits the square-root singularity in curvature 
at  s = c previously referred to. Clearly O,(s) = O,*(s) when S,, = 0, but the 
singularity in behaviour when this limit is approached through small values of 
S,, is seen if we invert (3.9) on the interval (c,  00) to give 8,(s) as an integral of OA(t):  

(3.11) 

Here, the derivative Bz ' f t )  cannot be inserted in the integrand to give the next 
approximation to O,(s), since the resulting integral would diverge at  t = c. 

The solution of these equations for O,(s) on c < s < 00 is discussed in the next 
section. [The distribution of vorticity on the chord 0 < s < c can be found in 
terms of O,(s) by transformations similar to the above.] 

0 < s < c :  y(s) = -2uw 



632 D. A .  Spence 

The total clockwise circulation in a circuit surrounding the aerofoil and cutting 

r = nrrum~c[i - s p q ,  (3.13) the wake a t  infinity is 

where 

The coefficient nU,ac is the KuttaJoukowski value for the circulation. Here 
again, direct substitution of e,*’(t) in the integrand would produce a singularity, 
and it is necessary to look further into the solution of (3.11) before C can be 
calculated for small &Jc. 

Taylor (1925) showed that the Blasius theorem L = pUm I? still holds when a 
vortical wake is present, provided I’ is calculated round a circuit cutting the 
streamlines in the wake at right angles far downstream; this result can also be 
verified directly in the present case, since the lift is the sum of 

which is the normal force on the aerofoil, and the vertical component of the skin 
friction on the aerofoil, namely apUZ, d,, in the present approximation. In view 

of (2.9), the sum of these two terms is -pU, y(s) ds = pU, r. 

4. Solution of the integro-differential equation 
In (3.9), write 

s/c = x+ 1, o,(~) - e,*(s) = a$(z) / (x  + 114, (4.1) 

when the equation becomes 

and for smooth flow at the trailing edge $(O) = 0. 
It does not seem possible to solve this equation in closed form, and attempts 

to treat it  numerically have not up to now been successful. However, an approxi- 
mation to the solution when p is small can be found as follows. First, scale z and 
q5 so the first and third terms on the left are formally of the same magnitude as the 
right-hand side. This is accomplished with the transformation 

x = lux, $(4 = P Y ( X ) ,  (4.3) 

(4.4) when (4.2) becomes (1 + p X )  Lf(X) + 4X-4 = 1 z P f  ( X ) ,  

where L f ( X )  = f ’ ( X ) - -  ~ 

7r S 0 Y - X ‘  ( y ,  (4.5) 

The first approximation for small p would be to solve the equation obtained 
by settingp = 0 on both sides of (4.4); but a better approximation to the solution 
in the region where p X  % 1 is obtained if we retain p on the left-hand side, while 
still discarding it on the right. Subsequently we can verify that the function f ( X )  
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so found is uniformly bounded on 0 < X < 00, which provides some justification 
for the exclusion of pf(X) from (4.4). 

Accordingly we treat the equation 

W X ) + g ( X )  = 0, 
where g ( X )  = $X-B( 1 +pX)- l .  
The solution can be written 

f (X) = fO(X) + Afl(X), 

where f o ( X )  is a particular solution of (4.6), A an arbitrary constant, and fl(X) 
satisfies the homogeneous equation 

Lf1(X)  = 0. (4.8) 

The solutions are found in terms of the Laplace transforms 

fa([) satisfies the integral equation 

(4.10) 

andfl(t) the same equation with @ absent. These are in the form of Carlemann's 
singular equation, and can be solved by reduction to a Hilbert problem (see for 
example Tricomi 1957, pp. 188-197). The details will be given in a separate 
report. The final results are 

(4.11) 

(4.12) 

These expressions are regular in the region -rr < argg < 7r, i.e. in the 6 plane 
cut along the negative real axis, except for poles a t  6 = f i. Inversion of the 
Laplace transform gives contributions which for small p tend to 

- (in)& cos ( X  - @), 24 sin ( X  - &r) (4.14) 

from the poles offo([), fl(g) respectively. In  addition there are loop integrals 

(4.15) 

(k = 0 , l )  along contours passing inside the poles. These integrals can be put in 
real form by taking the contour as the two sides of the negative real axis and using 
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Plemelj formulae to connect the values of Y immediately above and immediately 
below this axis. In this wa,y we obtain 

where 

dt + contribution from poles, (4.16) 

K(t)  = - = O(t1ogt) as 1 + 0. 

The limiting behaviour as X + co is found by writing s = tX, when the integral 

(4.17) 

Similar but more intricate analysis shows that the loop integral forfo(X) behaves 
like 

where p* = (,u/n) (log l/p), as ,u + 0 for fixed X .  
This expression 1 

27TxJi 
N-- (logl/p) as X +co. (4.18) 

In passing, the behaviour of fo and fi near X = 0 may be noted: it is 

f0(X) = - x4 + O(X2),  f1(X) = x + O(X2). (4.19) 

No restriction has been imposed on the values off,(O), fi(0) but it appears that 
the above, both of which vanish at X = 0 are the only possible solutions. These 
results are sufficient to permit the calculation of the quantity C in (3.13). With 
the notation of (4.4), (4.6) and omission of the term that is uniformly of order p, 

m 

c = 'J (f'(Y)+g(Y)) Y-4dY. 
n o  

Now equation (4.6) can be inverted to the form 

(4.20) 

(4.21) 

(This can also be derived directly from (4.11).) The solution just quoted is of 

the form f ( X )  = Beix + f * ( X ) ,  (4.22) 

say, wheref*(X) = O(l/X$) as X .+ 00, and we now show that 

C = lim X+f*(X). (4.23) 
X+a, 

To show this, substitute (4.22) into (4.21). Then since 

we have 

(4.24) 
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as X + co. Therefore 

(4.25) 

and substitution of (4.22) into (4.20) shows that the right-hand sides of (4.20) and 
(4.25) are the same. 

From (4.17), (4.18) it therefore follows that 

c = (1/27r)log(l/,u)+A/7rt. (4.26) 

5. Discussion 
The present work was undertaken primarily to resolve the question of where 

the sources representing the displacement thickness of the wake should be 
located in a potential-flow calculation. This is answered in principle by the 
solution of $4,  which gives the function #(x) and therefore the slope of the wake 
centre-line. It was not appreciated at the outset however that the solution would 
contain the arbitrary constant A which it appears can be fitted only by con- 
sidering the details of the separating flow near the trailing edge. 

The curvature at the trailing edge is proportional to A (as follows from 
(4.19)), so the assumption of zero pressure rise exactly at the trailing edge 
would require the value A = 0. The leading term in the circulation defect is then 
of order R-4 log R for laminar flow. Brown & Stewartson (1970), however, 
arrive at  a term of order R-8. In  effect they assume a solution for $(x) with 
asymptotic behaviour N const/X$, which is just that given by (4.17), and treat 
the pressures above and below the wake as equal. This would emerge from the 
present analysis if we adopt the scaling 

x = €32, where E = R t  (5.1) 

which Brown & Stewartson show is appropriate to the viscous region close to 
the trailing edge. Then since ,u = O(e4), (4.2) becomes 

The solution of this equation with zero on the right-hand side is just 

$(?) = const. 5-4. (5.3) 

To this extent their assumed outer solution is consistent with the present 
one, but the two approaches cannot be fully reconciled, since their h a 1  result 
would require our constant A to be of order E - ~ ,  and we should then predict a 
pressure rise of order E across the wake, whereas in both analyses it is concluded 
that pressure variations are at most of order c2 (and Brown & Stewartson in 
fact set Ap = 0 downstream of the trailing edge). 

Another unexpected feature of the solution is the oscillatory behaviour repre- 
sented by the terms in $;(X- in-) in (4.14). The oscillation decays in amplitude 
because of the factor (x + l)-4 in (4.1). The mathematicalreason for the oscillatory 
terms, and for the arbitrary constant in the solution, lies in the change in character 
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of (4.2) when ,u changes sign. For ,LL negative, i.e. a momentum excess, (4.2) is a 
form of the jet-flap integro-differential equation studied by Spence (1956, 1961) 
and possesses a one-parameter family of monotonically decaying solutions 
characterized by the value of $ ( O ) .  When ,u is positive, however, the solution 
takes the form (4.22), and all solutions are such that $ ( O )  = 0, and are instead 
characterized by the value of lim d($(x) + x f ) /dx .  The streamline curvature 

associated with these terms is of order a&, and the strength of the corresponding 
vorticity distribution is therefore of order aU,Sfr, i.e. aU,R*, as stated in the 
introduction. The oscillatory terms do not however affect the overall expression 
for circulation, and their possible physical significance must remain an open 
question. 

x+o 
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